Elementary Gates for Quantum Computation Tycho Sleator

نویسندگان

  • Charles H. Bennett
  • Richard Cleve
  • David P. DiVincenzo
چکیده

We show that a set of gates that consists of all one-bit quantum gates (U(2)) and the two-bit exclusive-or gate (that maps Boolean values (x; y) to (x; xy)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n)) can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized Deutsch-Toooli gates, that apply a speciic U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satissed. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two-and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toooli gates, and make some observations about the number required for arbitrary n-bit unitary operations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary gates for quantum computation.

We show that a set of gates that consists of all one-bit quantum gates (U(2)) and the two-bit exclusive-or gate (that maps Boolean values (x, y) to (x, x⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2n)) can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized D...

متن کامل

Mathematical Models of Contemporary Elementary Quantum Computing Devices

Computations with a future quantum computer will be implemented through the operations by elementary quantum gates. It is now well known that the collection of 1-bit and 2-bit quantum gates are universal for quantum computation, i.e., any n-bit unitary operation can be carried out by concatenations of 1-bit and 2-bit elementary quantum gates. Three contemporary quantum devices–cavity QED, ion t...

متن کامل

Arbitrary two-qubit computation in 23 elementary gates

We address the problem of constructing quantum circuits to implement an arbitrary two-qubit quantum computation. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit rotations and 2 controlled-NOT ~CNOT! gates. We also constructively prove a wor...

متن کامل

2 v 2 2 1 N ov 2 00 2 An Arbitrary Two - qubit Computation In 23 Elementary Gates ∗

Quantum circuits currently constitute a dominant model for quantum computation [14]. Our work addresses the problem of constructing quantum circuits to implement an arbitrary given quantum computation, in the special case of two qubits. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates [1] as possible. Our lower bound for worst-case optimal two-qubit ci...

متن کامل

nt - p h / 02 11 00 2 v 3 3 M ar 2 00 3 An Arbitrary Two - qubit Computation In 23 Elementary Gates ∗

Quantum circuits currently constitute a dominant model for quantum computation [14]. Our work addresses the problem of constructing quantum circuits to implement an arbitrary given quantum computation, in the special case of two qubits. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates [1, 15] as possible. Our lower bound for worst-case optimal two-qubi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995